Ключевое слово экологичность Найдено записей 2
Сравним окна
ТЕПЛОСБЕРЕЖЕНИЕ | |
ПВХ | 1.4-1.9 Вт/м°С (здесь и далее, диапазон вызван зависимостью от типа стеклопакета) Хорошее теплосбережение только без армирования. Сильно зависит от количества воздушных камер в профиле. Падает по причине установки внутри профиля металлического армирования. Без армирования коэффициент теплопроводности - 0.15 Вт/м°С. С армированием - 1.4-1.9 Вт/м°С. |
Дерево | 0.9-2.1 Вт/м°С Для чистого материала теплопроводность очень низкая - 0.28 Вт/м°С, но для конструкции... см выше. |
Композит | 0.4-0.68 Вт/м°С Очень низкий коэффициент теплопроводности, а значит очень высокий показатель теплосбережения. Для чистого материала - 0.30 Вт/м°С. Даже для суровых зим России и Канады оказывается достаточно всего ОДНОЙ воздушной камеры (против 5-ти и более в ПВХ-профилях) |
Алюминий | 1.8-2.5 Вт/м°С Плохое. 150 Вт/м°С без терморазрыва - пластиковой вставки, разделяющей профиль на внешнюю и внутреннюю составляющие. С терморазрывом для аналогичной остальным конструкции - 0.9-2.1 Вт/м°С |
ДОЛГОВЕЧНОСТЬ | |
ПВХ | Самая низкая. 10-15 лет. Диапазон рабочих температур от -30°С до +60°С. Температура пластичности +80°С. Коэффициент линейного расширения в 8 раз выше, чем у стекла, что приводит к постоянным деформациям конструкции и разрушению монтажных элементов. Требуют регулировки 1 раз в год. Конструкция сварная, элементы не подлежат замене. |
Дерево | 20-30 лет. Рабочие температуры от -70°С до +150°С. Подверженность климатическим воздействиям. Требуют обновления покрытия 1 раз в 1-4 года. Замена элементов невозможна. |
Композит | 50 лет. Рабочие температуры от -70°С до +170°С. Коэффициент температурного расширения 9-11*10-6/°С, у стекла - 10. Деформаций конструкция не испытывает. Регулировки не требуются. Элементы окна являются заменяемыми на случай повреждения. |
Алюминий | 15-25 лет. Рабочие температуры от -80°С до +100°С. Гарантия на профиль от 1 до 10 лет. Единственный минус - подвержен электрохимической коррозии. |
ЭКОЛОГИЧНОСТЬ | |
ПВХ | Большие энергозатраты: Embodied energy = 100 МДж/кг. Материал нестабилен. Сырье для производства - винилхлорид - бесцветный газ, сильный яд, оказывающий на человека канцерогенное, мутагенное и тератогенное действие. Не перерабатывается. Нельзя допускать горение. 1 кг сгоревшего ПВХ = 50.000 жизней лабораторных животных. |
Дерево | Минимальные энергозатраты: Embodied energy = 10 МДж/кг. Переработка клееного бруса затруднена по причине различных рецептур (разные клеи, огне-, водо-, био-пропитки) |
Композит | Embodied energy = 60 МДж/кг. Полностью перерабатываем. Негорюч. |
Алюминий | Огромные затраты энергии на производство. Показатель Embodied energy = 190 МДж/кг. |
БЕЗОПАСНОСТЬ | |
ПВХ | Самый ядовитый из всех используемых пластиков. Подвержен цепной реакции дегидрохлорирования. Выделяет фталаты (пластификаторы) при комнатной температуре. При нагревании - диоксины и фосген (СОСl2, боевое вещество удушающего действия). Группа токсичности Т3 - по ГОСТ 12.1.044-89 (высокоопасные по токсичности продуктов горения по СНиП 21-01-97). Неизбежно присутствие на поверхности статического электричества, что способствует усилению эффекта "больного здания". Температура разложения 100-140°С. Негорючий остаток - 10%. |
Дерево | Присутствие вредных для здоровья веществ, попадающих в клееный брус с пропитками огнебиозащиты, а также из состава самого клея. При строительстве помещений для длительного проживания, следует учитывать восприимчивость организма к вредным веществам, способным при определенных условиях проникать в воздушную среду жилья. Пожароопасен (класс - без огнезащиты) |
Композит | Не подвержен процессу деструкции. На 70% состоит из стекла. Стабилен до температуры 550°С. Бактериологически устойчив. Условий для развития патогенной флоры не создает. Группа токсичности Т1 (Малоопасные. Всего групп токсичности 4). Содержит 10% эпоксидной смолы и 8% отвердителя, вступающих в необратимую реакцию образования жесткой пространственной сетки. Выдерживается 1 месяц после производства до полного отвердевания связующего. Пожаробезопасен. Коксовый остаток (негорючий остаток) составляет 90%. |
Алюминий | Бактериологически устойчив. Для человека безопасен. Пожаробезопасен. |
ЭРГОНОМИКА | |
ПВХ | Материал не обладает достаточной прочностью. Применение для остекления больших проемов или остекления террас требует установки дополнительных усиливающих элементов, что утяжеляет конструкцию, уменьшает световой проем и снижает степень удобства эксплуатации изделий. |
Дерево | Материал тяжелый. Замечательно подходит для стандартных оконных конструкций. Не применяется для остекления больших площадей. |
Композит | Малый вес материала при его уникальной прочности позволяет создавать и с легкостью эксплуатировать поистине огромные конструкции, например, раздвижные двери со створками размером 3х1.5 метра. |
Алюминий | За счет особенностей фурнитуры для алюминиевых оконных конструкций, можно оценить удобство эксплуатации таких изделий, как среднее. |
ПРОЧНОСТЬ | |
ПВХ | Предел прочности при статическом изгибе 80-110 МПа Твердость 13-16 Н/мм2 Допустимый размер створки 1.4х1.4 метра |
Дерево | Предел прочности при статическом изгибе 70-92 МПа Твердость 3-8 Н/мм2 Для остекления больших площадей не используется, требуются дополнительные переплеты. |
Композит | Предел прочности при статическом изгибе 690-1240 МПа Твердость 20-35 Н/мм2 Обладает прочностью стали (твердость стали 20-80 Н/мм2). Пригоден для остекления больших площадей, фасадного остекления, изготовления сплошных стеклянных стен. |
Алюминий | Предел прочности при статическом изгибе 275 МПа Твердость 13-32 Н/мм2 Сильно проигрывает стали по показателям предела прочности. Используется в основном в фасадном остеклении. Профиль из алюминия имеет внушительные габариты по сравнению с остальными. |
СТОИМОСТЬ | |
ПВХ | Примем стоимость пластиковой конструкции за 100% |
Дерево | 200-300% от стоимости пластикового аналога |
Композит | 130% |
Алюминий | 150-170% |
ДИЗАЙН | |
ПВХ | Стандартные варианты декорирования: ламинация, покраска (ограниченное количество цветов). Внешний вид профиля мало отличается от производителя к производителю. Исключение составляют элитные пластиковые профили с более узкой коробкой и закругленными формами. |
Дерево | Элегантный и дорогой внешний вид. |
Композит | Покраска по каталогу цветов RAL, ламинирование пленкой, покрытие натуральным дубовым шпоном (торговая марка - окна Файберже), художественная покраска (перламутр, имитация древесины) |
Алюминий | Покраска по каталогу цветов RAL. |
Экологичность стеклокомпозита
СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОЕКТОВ ПО ОРГАНИЗАЦИИ ПРОИЗВОДСТВА ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ СТЕКЛОКОМПОЗИТНЫХ МАТЕРИАЛОВ НА ПРЕДМЕТ ЭКОЛОГИЧНОСТИ
Существующие сегодня технологии производства различных искусственных материалов (пластмасс) в своей основе призваны заменить массовое использование в различных отраслях промышленности традиционные материалы: металл, дерево, камень и т.д., в т.ч. и с целью сохранения восполнимых и невосполнимых природных ресурсов.
Однако, в большинстве случаев получаемые в результате материалы в основном имеют низкие экологические показатели (легко воспламеняемы и при горении выделяют токсины, имеют низкие прочностные и антикоррозийные характеристики и т.д.), что ограничивает их применение в различных областях. При этом особое внимание обращает на себя большой удельный вес «химического» способа производства данных материалов, что в высокой степени неблагоприятно влияет на экологию, а также тот факт, что в производстве основным сырьем является нефть и ее производные (невосполнимые природные ресурсы).
ООО «Завод Стеклопластик» совместно с Российской академией наук, Канадской Корпорацией «Инлайн Файбергласс» и Национальным Комитетом по развитию Канады (
NRC
) приступили к реализации на территории РФ ряда проектов, результатом которых является продвижение на российский рынок принципиально новой продукции, основанной на технологии использования стеклокомпозитных материалов из минеральных волокон и дальнейшей их переработки в основном методам пултрузии (протяжки), а также прессования, центробежного литья и других видов технологической переработки с использованием так называемых
реактопластов
, процессы полимеризации которых полностью заканчиваются после окончания того или иного вида переработки, что, в свою очередь, позволяет говорить о практически полной инертности готового изделия.
Помимо того, что указанные материалы полностью заменяют традиционные (дерево, металл и т.д.), причем по своим физико-механическим свойствам не уступают им (а по некоторым параметрам превосходят), технология их применения полностью исключает возникновение каких-либо токсичных отходов, а сырьем является обычный кварцевый песок и мел или рифовый арагонит .
На примере стеклокомпозитов , которые изготавливаются из стекловолокна, таблица сравнительных физико-механических и теплофизических характеристик различных материалов будет выглядеть следующим образом (см.след.лист):
Сравнительные физико-механические и теплофизические свойства материалов |
Характеристика |
Стеклокомпозит |
Поливинил-хлорид |
Дерево |
Алюминий |
Токсичность материала при пожаре |
Нетоксичен |
смертельно токсичен* |
нетоксичен |
нетоксичен |
Срок эксплуатации, годы |
50 - 75 |
5 - 15 |
10 - 20 |
30 – 50 |
Энергосберегающая способность** |
2,2 |
1,9 |
1,0 (база сравнения) |
0,5 |
* - выделяет хлорорганические вещества типа диоксина, а также при воздействии высокой температуры происходит его оплавление и, как следствие, заклинивание дверей и окон из него, что является трагическим препятствием для эвакуации людей;
** - относительная годовая экономия затрат на отопление 1 м 2
остекленной площади здания при условии использования стеклокомпозитного профиля в конструкциях остекления.
Вышеуказанные свойства стеклокомпозитов распространяется и на другие композитные изделия, в производстве которых используются минеральные волокна (в частности, базальтоволокно и углеволокно), причем по некоторым позициям базальтоволокно и углеволокно превосходят стекловолокно (например, изделия из базальтоволокон способны выдерживать температуры 1 000 С о
).
В обобщенном виде общие преимущества композитных материалов из минеральных волокон выглядят следующим образом:
Исключительно высокие показатели долговечности.
Результаты отечественных экспресс исследований и натурные исследования показывают, что конструкции( окна и раздвижные двери) из таких материалов во много раз превосходят срок службы аналогичных конструкций из дерева, ПВХ, стали, алюминия.
Высокая надежность.
Физико-технические качества материалов из минеральных волокон обеспечивают безотказную работу изделий (окон и раздвижных дверей), изготовленных из этих материалов, в течение 70 лет и более, без существенных затрат на эксплуатацию. В частности, по прочностным показателям стеклокомпозит близок к алюминию, стоек к атмосферным воздействиям, влиянию влаги и агрессивных сред, трудно сгораем и в случае пожара, не выделяет практически диоксинов, не представляя тем самым повышенной опасности. Имеет незначительные температурные деформации (в 6-12 раз меньше, чем у ПВХ).
Современный дизайн. Энергоэффективность .
На примере конструкций остекления (окна и раздвижные двери), в которых используются профили из стеклокомпозита, данные профили имеют высокую прочность и позволяют изготавливать окна и раздвижные двери с большой площадью остекления с тонкими элементами переплетов, которые, в свою очередь, могут иметь любой цвет в соответствии с пожеланиями заказчика. Окна и раздвижные двери с переплетами из стеклокомпозита могут быть использованы как при строительстве новых, так и при реконструкции эксплуатируемых зданий. При этом затраты на отопление снижаются на 15-20%, по сравнению с традиционно используемыми переплетами.
Также следует отметить безотходность и экологическую безопасность способов утилизации изделий из вышеуказанных композитных материалов, обусловленных составом изделий (на 70% и более состоящих из природных минералов) и возможности их применения после переработки в качестве наполнителя в различных материалах.
Ниже приведен перечень проектов, предусматривающих организацию производства различных изделий из композитных материалов на основе минеральных волокон с использованием передовых отечественных и зарубежных технологий и имеющих большую значимость с точки зрения экологии.
Проект «Организация производства труб методом центробежного литья».
Проект предусматривает собой организацию производства труб большого диаметра методом центробежного литья с последующим их использованием в безнапорных магастралях. В процессе производства в качестве армирующего материала используются стекловолокно и\или базальтоволокно. Получаемая продукция имеет гарантийный срок эксплуатации 50 лет, при этом заявленный срок службы составляет не менее 100 лет. Продукция применяется в безнапорных магистралях для транспортировки различных жидкостей, в т.ч. агрессивных.
Проект «Организация производства труб различного диаметра методом пултрузии и широкоформатной пултрузии».
Проект предусматривает организацию производства труб различного диаметра методом пултрузии и широкоформатной пултрузии на основе применения стекло-, угле- и базальтоволокна (в зависимости от заданных характеристик готовой продукции). В отличие от труб, получаемых методом центробежного литья, пултрузионная технология позволяет получать трубы повышенной прочности (выдерживают внутренне давление до 200 атм.), что значительно расширяет спектр их применения в соотвествующих областях. Повышенные прочностные характеристики позволяют использовать продукцию в магистральных напорных трубопроводах, т.е. нефте- и газопроводов.
Экологичность продукции:
малая вероятность порывов трубопроводов и, как следствие, отсутствие токсичных выбросов в окружающую среду (при условии транспортировки агрессивных сред). Следует также обратить внимание на потенциальное увеличение значимости данной характеристики труб при условии их применения на месторождениях нефти и газа т.к. здесь немаловажную роль играет факторы удаленности, труднопроходимости и обширная площадь районов, где планируется использовать трубы из композиционных материалов;
длительные сроки эксплуатации и, как следствие, экономия использования традиционных материалов (металлов);
инертность материала, что позволяет осуществлять прокачку питьевой воды без изменения качества последней;
длительность эксплуатации, что позволяет свести к минимуму проведение ремонтных работ, сопровождающихся земляными работами и, как следствие, сохранению верхнего (плодородного) слоя почвы;
низкий коэффициент теплопроводности, что позволяет снизить энергозатраты при использовании труб в различных системах отопления, и, как следствие, ведет к сбережению энергоносителей, относящихся к невосполнимым природным ресурсам (нефть, уголь и т.д.).
Проект «Организация производства сэндвич-панелей методом широкоформатной пултрузии».
В рамках реализации проекта организуется производства трехслойных (сэндвич) панелей методом широкоформатной пултрузии, обладающих уникальными энергосберегающими характеристиками. Использовать данную продукцию планируется в основном в строительстве как в качестве навесных элементов, так и в качестве самостоятельных элементов конструкций. Помимо энергосбережения эффективность использования сэндвич-панелей также определяют основные свойства материалов, из которых они производятся (антикоррозийность, долговечность, прочность и т.д.).
Проект «Организация производства конструкционного профиля различной конфигурации».
Данный проект предусматривает организацию производства профиля различной конфигурации и размеров для использования в различных отраслях как в виде самостоятельных изделий, так и в качестве конструкционных элементов. Области применения определяются свойствами материала. Данный проект непосредственно привязан к Проекту № 3, т.к. сэндвич-панели и конструкционный профиль определенной конфигурации применяются при изготовлении сборных конструкций (модульное строительство) – мини-коттеджей, торговых павильонов, специализированных служебных построек и пр.
Экологичность продукции:
возможность проведения «чистой» застройки при строительстве сборных конструкций, т.е без проведения предварительных экологически «грязных» работ, а также без необходимости последующего устранения всех сопутствующих «результатов» строительства (безотходная технология);
отсутствие необходимости использования природных материалов (в частности, дерева) при строительстве сборных конструкций;
энергосбережение (экономия топливных ресурсов, а также отсутствие необходимости проведения работ по прокладке тепломагистралей для подвода тепла);
применения конструкционного профиля на предприятиях химической отрасли промышленности значительно снижает вероятность каких-либо техногенно-экологических катастроф различного масштаба, связанных с повышенной скоростью «старения» традиционных природных материалов (в т.ч. металлических и бетонных конструкций) на данных предприятиях по сравнению с композитными, имеющими повышенные антикорроозийные свойства;
огнестойкость (пожаробезопасность) получаемых конструкций.
Проект «Организация производства конструкций остекления с применением стеклопластикового профиля».
Проект состоит из двух сегментов: производство стеклокомпозитного профиля и производство собственно конструкций остекления с применением указанного профиля. Получаемые изделия имеют все указанные в начале данного документа преимущества по сравнению с конструкциями, изготавливаемыми из других материалов (ПВХ, дерева, алюминия).
Экологичность продукции.
огнестойкость (пожаробезопасность) конструкций;
энергосбережение (экономия топливных ресурсов);
отсутствие токсичных выделений (как в условиях обычной эксплуатации, так и при температурных и химических воздействиях);
см.также в Дополнении выдержки из статьи в газете «Известия»)
длительность использования (экономия природных материалов);
Данный проект также планируется осуществлять совместно с проектами 3 и 4, т.е. использовать конструкции остекления в модульном строительстве.
Проект «Организация производства стекломата из непрерывного стекловолокна».
Проект «Организация производства базальтоволокна»
Данные проекты также заявлены в общем структурном проекте организации соответствующих производств на основе применения композитных материалов из минеральных волокон как проекты, организующие сырьевое обеспечение производств.
Стекломат из непрерывного стекловолокна обеспечивает по сравнению с отечественными стекломатами повышенные прочностные характеристики получаемых изделий при его использовании в их производстве.
Производство базальтоволокна в промышленных объемах на территории РФ в настоящее время отсутвует, а его использовании в производстве соотвествующей продукции (труб, профилей, различных конструкционных изделий) позволит получать изделия с повышенной химстойкостью и огнестойкостью по сравнению с аналогичными изделиями, в производстве которых используется стекловолокно.
Экологическая составляющая данных проектов опосредована и привязана непосредственно к готовым изделиям, в производстве которых используется стекломат и базальтоволокно.
Проект «Энергоэффективный дом».
В рамках данного проекта планируется наладить массовое строительство типового жилья, в котором будут использованы различные технологии энергосбережения: применение материалов с низким коэффициентом теплопроводности, создание комплексной системы отопления и вентиляции здания, экономия энергоресурсов за счет самостоятельной миниэлектростанции и распределением потребления энергии в течение суток и т.д.
В рамках этого проекта планируется поставка конструкционного профиля различной конфигурации, сэндвич-панелей, контрукций остекления и т.д., т.е. изделий с повышенными энергосберегающими свойствами.
Экологическая эффективность данного проекта взаимоувязана с проектами 3, 4 и 5.
В дополнение к указанным выше проектам ниже приведен далеко неполный перечень возможного применения изделий из композитных материалов на основе минеральных волокон:
АВИАСТРОЕНИЕ
- корпусные и декоративные элементы, планеры, силовые элементы и конструкции, емкости, детали двигателя и т.д.
АВТОМОБИЛЕ-СТРОЕНИЕ
- антикорозийные элементы кузова и стеклопластиковые кузова автомобилей, детали двигателя, элементы отделки салона, термостатированные контейнеры.
НЕФТЕГАЗОВЫЙ КОМПЛЕКС
- конструкции буровых установок, особенно для морской добычи, элементы конструкций глубинного забора нефти, трубопроводы, емкости нефте и бензо хранилищ, АЗС.
СТРОИТЕЛЬСТВО
- стеновые панели, силовые конструкции, модульные сооружения, окна, двери, светопрозрачные конструкции фасадов, зимние сады, остекление лоджий, элементы каркасов, арматура бетона.
ЭЛЕКТРОНИКА
- корпуса электронных приборов, микросхем, оптико-волоконные кабели, строительные и отделочные конструкции с высокими антистатическими показателями для специальных производственных помещений, радиопрозрачные укрытия, элементы антенн.
ЭНЕРГЕТИКА
- защитные короба высокого и низкого напряжения, осветительные столбы и опоры линий электропередач, электромонтажная оснастка, элементы конструкций теплообменников, теплоизоляционные покрытия ТЭЦ.
ХИМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ
- емкости для химических процессов с агрессивными средами, для хранения агрессивных веществ, технологические трубопроводы, элементы несущих и защитных конструкций сооружений, находящихся в агрессивных средах.
СУДОСТРОЕНИЕ
- корпуса малых судов и элементы конструкций корпусов больших судов, палубные надстройки, детали и элементы ограждений, мачты и антенны, отделка, спасательные средства, яхты, катера.
ТРАНСПОРТ
- элементы корпуса электропоездов, отделка вагонов, транспортные контейнеры, защитные кожухи токосъемников в метрополитене, защитные короба для кабелей подземных сооружений, крепежные конструкции тоннелей, элементы станционных сооружений, мачты, опоры, навесы. Транспортные мосты.
ЭКОЛОГИЯ
- городские сети канализации, бассейны аэрации, отстойники, сборники и емкости для жидких токсичных отходов, мусорные контейнеры, желоба ливневых стоков.
КОММУНАЛЬНЫЕ СЛУЖБЫ
– водозаборные станции, навесы для таксофонов, будки, автобусные остановки, лотки, киоски, уличные кресла, малые архитектурные формы, оснащение подъемных кранов и механизмов.
ОБЩИЙ ВЫВОД
На основе всего вышеизложенного можно с полной уверенностью говорить о том, что применение изделий из композитных материалов на основе минеральных волокон в различных отраслях промышленности и народного хозяйства имеет большое значение для обеспечения экологической безопасности исходя как из свойств композитных материалов (антикоррозийность, химстойкость, прочность, долговечность и т.д.), так и конкретных способов применения готовой продукции.
При этом следует отметить тот факт, что получаемые изделия с успехом заменяют аналогичные, в производстве которых используются невосполнимые природные ресурсы (руда, древесина, уголь и т.д.).
ДОПОЛНЕНИЯ.
Краткое описание процесса пултрузии.
Пултрузия представляет собой вытягивание через нагретую фильеру (матрицу) композитного материала, пропитанного термореактивной смолой. Требуемая конфигурация профиля задается формой фильеры, а необходимую жесткость материал приобретает за счет полимеризации смолы, вызванной нагревом фильеры. В результате на выходе из фильеры получается армированный профиль, конфигурация которого повторяет профиль фильеры.
Выдержка из рекомендаций экспертной комиссии Комплекса перспективного развития города Москвы №537-РЗП от 24.06.1998 г.
«…из всех материалов, используемых сегодня в строительстве, композитные материалы, в том числе и, в первую очередь стекловолоконный композит (стеклокомпозит) обладает наиболее привлекательной перспективой, поскольку его характеристики соотносятся с прочностью стали, теплопроводностью дерева и легкостью ПВХ. Обширный класс конструкций из металла и железобетона, алюминия и ПВХ-профилей может быть успешно и эффективно переведен на использование стеклокомпозитов»
Выдержка из статьи в газете «Известия» от 07.05.1998 г., «Евроремонт сокращает жизнь ?», автор Наталья Тимашова.
«Многие европейские фирмы-производители таких популярных сегодня в России половых покрытий, окон, дверей, кабелей и прочих изделий из ПВХ (поливинилхлорида) у себы дома находятся в весьма затруднительном положении. Спрос на их продукцию резко падает, так как европейцы и американцы отказываются ее использовать из-за вредности. Винилхлорид относится к профессиональным канцерогенам, он официально признан веществом первой группы опасности, воздействие которого может привести к возникновению раковых опухолей у человека (в частности, опухоли мозга, печени, легких). Винилхлорид является еще и нейротропным ядом, оказывающим пагубное влияние на нервную систему. И фирмы ищут новые рынки сбыта совей долговечной и опасной продукции. В том числе и в России, где людей пока еще привлекает практичность и дешевизна изделий из винилхлорида.
Из ПВХ изготавливаются множество изделий: трубы, жалюзи, оконные рамы, скатерити, занавески, настилы для пола, упаковочный материал, посуда, игрушки, изоляционные материалы, различные канцелярские и школьно-письменные принадлежности, некоторые детали автомобиля, медицинские инструменты… Поскольку на всех стадиях производства ПВХ используется хлор, то при изготовлении, использовании и утилизации его и изделий из него выделяется большое количество одних из самых ядовитых веществ – диоксинов. Этот искусственно синтезированный человеком материал невозможно уничтожить без следа и вреда для окружающей среды и нашего здоровья. При сжигании изготовленных из него линолеума, обоев, оконных рам, электрооборудования в атмосферу выделяется огромное количество тех самых смертоносных диокинов, воздействие которых в любых количествах пагубно для человека и всего живого. Немецкие специалисты обнаружили, что при сжигании всего одного килограмма поливинилхлоридаобразуется до 50 микрограммов диоксинов. Этого количества достаточно для развития раковых опухолей у 50 тысяч лабораторных животных.
Поэтому неудивительно, что во многих странах (в Бельгии, Франции, Швейцарии, США) уже отказались от использования ПВХ-упаковки в пищевой промышленности и торговле, запрещают применение ПВХ-материалов в жилом секторе строительства. В Австрии применение материалов из ПВХ запрещено в Венком метрополитене, большинство больниц прекратили использование медицинского оборудования из поливинилхлорида, постепенно прекращается использование офисного оборудования, окон и линолеума из ПВХ. В Германии же практически отказались от использования электрических кабелей в изоляции из ПВХ именно из-за того, что при их горении образуется значительное количество диоксинов.
- С этой проблемой уже столкнулись во многих странах, и у нас она, увы, неизбежна, - говорит эксепрт «Гринпис России» Алексей Кисилев. – В квартире или офисе делается то, что у нас называют евроремонтом – ставятся окна и двери-ПВХ, на пол стелится линолеум или ламинат, на стены клеятся какие-нибудт стеклообои или что-нибудь в этом роде. И если в такой виниловой квартире возникает пожар, она становится похожа на газовую камеру. Вначале выделяется угарный газ, потом пары соляной кислоты и дополняют букет диоксины. Всем этим дышат в первую очередь пожарные, к тому же ядовитая пыль оседает на стенах, потолках и еще долго остается в воздухе. Бесследно для людей все это не проходит. Когда в городе Шелехове Иркутской области горел кабельный завод, выпускавший ПВХ-изоляцию, пожар тушили 600 человек (4 пожарных гарнизона). Надышавшись ядовитыми парами, молодые, здоровые мужчины вышли постаревшими на 7 лет, все стали инвалидами. Хотя внешне они тогда совсем не изменились. 30 человек уже умерли, у многих сегодня аж по 20 хронических заболеваний. Все это подтверждают данные исследований Киевского института геронтологии, проводившихся специально по заказу кабельного завода.
Кроме того, виниловые и прочие самоклеющиеся, моющиеся обои и напольные покрытия еще выделяют формальдегид и эфирные масла. Были случаи, когда в московских школах приходилось перестилать пол, когда у детей в массовом порядке начинались головные боли. Оказалось, что причина этого – дешевый линолеум, который выделял формальдегид. Кстати, о линолеуме. На самом деле материал с этим названием, который начали производить более 100 лет в Германии, не имеет ничего общего с тем, что привыкли называть линолеумом мы. У нас так называют любое синтетическое покрытие для пола. В других же странах линолеумом называют любое синтетическое покрытие для пола. В других же странах линолеумом называют только то покрытие, которое делается из натуральных материалов (например, деревынной крошки) с использованием различных масел (пробкового, льняного). Но стоит такой настоящий линолеум процентов на 50-70 дороже синтетического напольного покрытия. Но, экономя на своем здоровье, можно собрать деньги разве что на собственные похороны.»